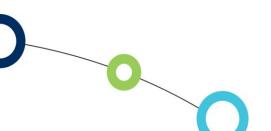


Matching Strategies

Ferran Vendrell-Herrero



Outline

- I. Motivation
- II. Basic example
- III. Types of matching
 - a) Weighted vs Unweighted
 - b) Propensity score vs Strata
- IV. Report reduction bias
 - a) Density plot
 - b) Table (t-test before and after matching)
 - c) Logit (before and after matching)
- V. My experience with matching strategy
- VI. Other considerations

I. Motivation

Utility in Non-Randomized Contexts:

• Ideal for studies utilizing observational data (e.g., surveys, financial records) where randomization isn't feasible.

Constructing Comparable Groups:

 Matches treatment groups with statistically comparable control groups, mimicking randomization in experimental settings.

•Diverse Applications:

- Widely used to compare entities like exporting vs. non-exporting firms, subsidized vs. unsubsidized organizations, or strategic alliances vs. independent operations.
- · Applicable at individual, firm, and country levels.

II. Basic example: Treatment group

ID	Subsidized	Employees	Industry	R&D workers	New Patents
a	1	200	Pharma	22%	3
b	1	400	Pharma	35%	5
С	1	800	Software	16%	2
d	1	500	Software	25%	3
Mean		475		24.5%	3.25
Mean Pha	ırma		50%		
Mean Sof	tware		50%		

Mean Software

ID	Subsidized	Employees	Industry	R&D workers	New Patents	
е	0	100	Agriculture	2%	2	
f	0	40	Pharma	20%	1	
g	0	180	Pharma	25%	2	
h	0	400	Pharma	32%	1	
i	0	820	Software	27%	3	
j	0	450	Software	15%	2	
k	0	22000	Food Processing	3%	12	
Mean		3427		17.7%	3.3	
Mean Pharma			43%			

29%

II. Basic example: Matched Control group (e, f, k out)

ID	Subsidized	Employees	Industry	R&D workers	New Patents	
g	0	180	Pharma	25%	2	
h	0	400	Pharma	32%	1	
i	0	820	Software	27%	3	
j	0	450	Software	15%	2	
Mean		463		24.8%	2.0	
Mean Pharma			50%			
Mean Software			50%			

III. (a) Weighted vs Unweighted (1 of 2)

1:1 Matching Without Replacement (Unweighted):

Description: Matches each treatment unit with the closest control unit that has not been previously matched.

Advantages: Simple interpretation and easy implementation. Reduces selection bias by creating directly comparable pairs.

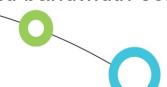
Limitations: Excludes some observations, potentially reducing sample size and power. Sensitive to the order of matching; may not capture all nuanced differences in treatment/control characteristics.

Kernel Matching (Weighted):

Description: Assigns weights to control units based on their distance to each treatment unit, using a kernel function.

Advantages: Utilizes all available data, increasing efficiency and precision. Smooths over small differences across units, providing a more comprehensive comparison.

Limitations: More complex to implement and interpret due to weight calculations. Sensitive to kernel choice and bandwidth selection.



III. (a) Weighted vs Unweighted (2 of 2)

Use Case Considerations:

1:1 Without Replacement: Best for smaller samples where robustness and simplicity are desired.

Kernel: Ideal for larger datasets where maximizing information from control units is crucial.

Implementation in Stata (psmatch2):

1:1 Without Replacement Example: psmatch2 treatment, out(outcome) neighbor(1) noreplacement

Kernel Matching Example: psmatch2 treatment, out(outcome) method(kernel)

Conclusion:

Choose based on study goals, sample size, and the importance of including more data vs. having a straightforward analysis.

III. (b) Propensity Score vs Strata (1 of 2

Propensity Score Kernel Matching:

Description: Assigns weights to control units based on the distance between their propensity scores and those of treatment units, utilizing a kernel function.

Advantages: Flexibility in capturing the entire distribution of covariates across treated and control groups. Retains practically all observations, maximizing dataset usage and analytical power. Very good with continuous variables (sales).

Limitations: Requires careful bandwidth and kernel function selection. Complex interpretation due to reliance on weighted averages.

Coarsened Exact Matching (CEM):

Description: Segment the data into strata based on coarsened values of covariates, ensuring exact matches within each stratum.

Advantages: Simple and intuitive; facilitates balance checks and diagnostics. Reduces model dependence and improves estimation precision by exact matching within coarsened strata. Very good with qualitative data (industry).

Limitations: Potentially discards a significant number of units, reducing sample size. It does not work with continuous variables.

III. (b) Propensity Score vs Strata (2 of 2)

Use Case Considerations:

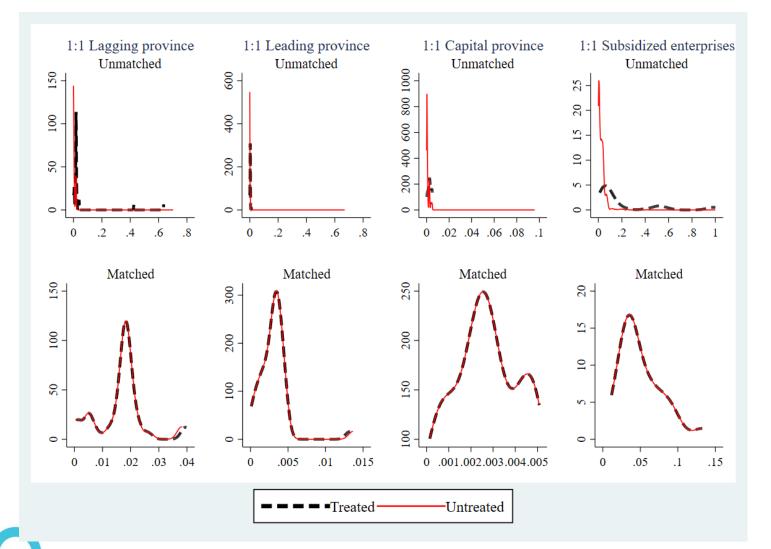
- CEM (Coarsened Exact Matching): Best for smaller samples where balance is a priority. It works very well when covariates are dummy or categorical.
- Kernel Matching: More suitable for larger datasets, as it utilizes weighted averages from multiple control units, improving efficiency while preserving more information. Works well with covariates as continuous.

Implementation in Stata: psmatch2 for Kernel and cem for CEM

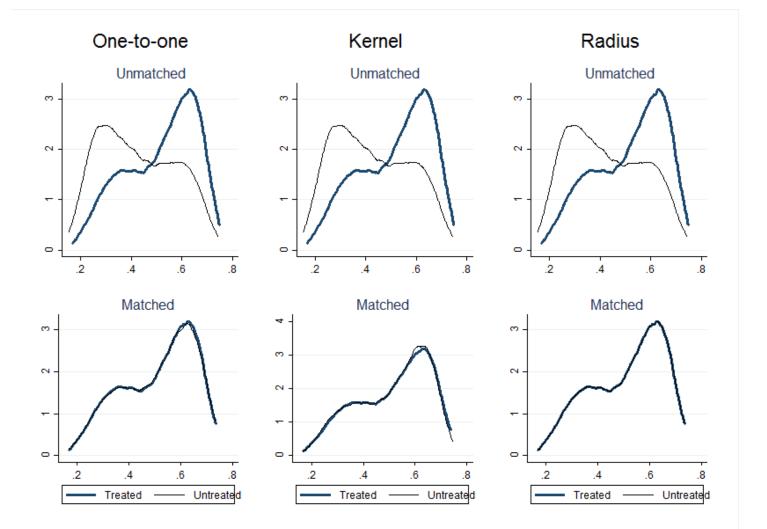
CEM Example:

cem Industry1 Industry2 Employees(10 50 250), treatment(treatment)

IV. (a) Reduction Bias: Density Plot



IV. (a) Reduction Bias: Density Plot



IV. (a) Reduction Bias: Density Plot – Stata code UNIVERSITY OF EDINBURGH Business School

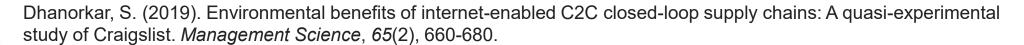
// Unmatched plot tw (kdensity `outcome_var' if `treatment_var'==1, kernel(`kernel_type') lcolor(black) clpattern(dash) lwidth(thick)) /// (kdensity `outcome_var' if `treatment_var'==0, kernel(`kernel_type') lcolor(red) lwidth(medium)), /// title("`title_main'") subtitle("Unmatched") ytitle("") xtitle("") /// legend(on order(1 "Treated" 2 "Untreated") colgap(zero) keygap(zero) size(small)) /// graphregion(color(white) lcolor(black)) plotregion(fcolor(white)) /// plotregion(style(none)) ylab(, nogrid) graph save output_prefix1.gph, replace

```
// Matched plot
tw (kdensity `outcome var' if `treatment var'==1 & `match var'==1
kernel(`kernel type') lcolor(black) clpattern(dash) lwidth(thick)) ///
 (kdensity 'outcome var' if 'treatment var'==0 & 'match var'==1,
kernel('kernel type') lcolor(red) lwidth(medium)), ///
 title("") subtitle("Matched") ytitle("") xtitle("") ///
 legend(on order(1 "Treated" 2 "Untreated") colgap(zero) keygap(zero)
size(small)) ///
 graphregion(color(white) lcolor(black)) plotregion(fcolor(white)) ///
 plotregion(style(none)) ylab(, nogrid)
graph save output prefix2.gph, replace
```

Graph Combine output_prefix1.gph output_prefix2.gph

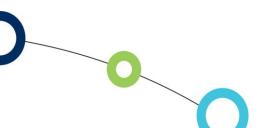
IV. (b) Reduction Bias: Table

	Before Matching		Nearest Three Neighbors with Replacement			Nearest Five Neighbors with Replacement		
Variables	Difference in means (before)	T-test (before)	Difference in means (after)	T-test (after)	Bias reduction (%)	Difference in means (after)	T-test (after)	Bias reduction (%)
Population	1.870	37.92***	0.038	0.52	98.0	0.032	0.44	98.3
Income	11.171	13.19***	1.614	1.24	85.6	1.077	0.82	90.4
Broadband Providers	2.801	15.86***	0.2519	0.83	91.0	0.151	-0.50	94.6
Population per Household	0.101	10.02***	-0.0376	-2.30**	137.4	-0.033	-2.00**	132.4
Ln(MSW per Capita) Lag1	0.24625	10.93***	0.06204	2.65**	74.8	0.05921	2.50**	76.0
Ln(MSW per Capita) Lag2	0.24796	10.72***	0.05505	2.33**	77.8	0.05643	2.32**	77.3
Ln(MSW per Capita) Trend	-0.53928	-0.15	0.0354	0.02	106.6	-0.75219	-0.37	-39.5



IV. (b) Reduction Bias: Table - Stata code

psmatch2 treatment, out(outcome) neighbor(1) noreplacement pstest, both



IV. (c) Reduction Bias: Logit

•Methodological Approach:

 Utilizes logistic regression models applied before and after matching.

Dependent and Independent Variables:

- Dependent Variable: Treatment variable.
- Independent Variables: All variables used in the matching process.

•Objective:

- Pre-Matching:
 - Independent variables should be highly significant.
 - Model exhibits high explanatory power.
- Post-Matching:
 - Independent variables should become statistically insignificant.
 - Model's explanatory power significantly reduces.=

Purpose:

- Validate the matching process's effectiveness in covariate balancing.
- Simulate a randomized experimental design.
- Diminish selection bias for more robust causal inference.

V. My experience with matching strategy

university of edinburgh Business School

- 1. Unweighted manual
 - a) Technovation (2014)
- 2. Unweighted psmatch2
 - a) Regional Studies (2014)
 - b) International Business Review (2020)
- 3. Weighted vs Unweighted Psmatch2
 - a) Journal of Business Research (2021)
- 4. Rounds of unweighted Psmatch2 e.g.,
 - a) 2:1 with a single sample (Journal of International Business Studies, 2022)
 - b) 4:1 with 4 comparison groups (Research Policy I, under review)
- 5. Weighted vs Unweighted & Weighted vs Strata Psmatch2 and CEM
 - a) Long Range Planning (2023)
 - b) Research policy II (under review)
- 6. Unweighted Psmatch2
 - a) Small Business Economics (2025)
 - b) Journal of International Business Studies (Under review)

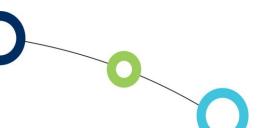
Policy related papers

Technovation (2014) → Spin-off vs non-academic start-ups. Manual Matching at the outset (foundation). Corroborated using Logit before and after matching. Companies followed over time using SABI data.

Key result: Spin-offs are less productive at the outset, but achieve higher productivity growth rates. 3 years after foundation they reach similar levels, and after that they are more productive.

Regional Studies (2014) → Cluster vs Non-cluster firms. *Psmatch2* 1:1 matching. Two data points (2002 and 2008) – matching done in 2002. Corroborated using Logit before and after matching.

Key result: The results provide some weak evidence for the existence of additionality associated with the policy.



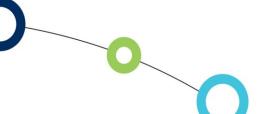
Exporting related papers

Journal of Business Research (2021): Servitized vs non-servitized firms on exports. German cross-section data. *Psmatch2* 1:1, Kernel and Radius. Graphical validation.

Key result: Firms that are servitized have 7-9% higher export intensity that firms that do not servitize.

Journal of International Business Studies (2022): Self-selection and learning by exporting simultaneously tested using a Heckman approach. Matching for the home market economic development (HIC, UMIC, LMIC, LIC). 1:1 and 2:1. No further validation of the matching (only in-text description).

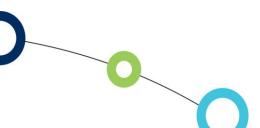
Key result: Self-selection is more prominent in HIC and Learning by exporting is more prominent in HIC.



Alliances related research (1 of 2)

Long Range Planning (2023): The effect of pre-acquisition alliances on post-acquisition performance. Data from SDC platinum (combining alliances database with acquisitions database). Weighted and unweighted, and also CEM vs psmatch2; Kernel vs 1:1 vs CEM.

Key result: Courtship effect exists, but is stronger in domestic settings, and the effect decreases with cultural distance.



Alliances related research (2 of 2)

	(1)	(2)	(3)	(4)
	Full sample	One-to-One	Kernel	CEM
PSA	5.1205**	3.6374***	5.4072***	5.6167***
	(2.0043)	(1.3621)	(2.0234)	(1.8043)
	0.0109	0.0080	0.0077	0.0020
PSA*Cultural distance	-1.3708**	-1.5660***	-1.6150**	-1.7705***
	(0.6340)	(0.5678)	(0.6395)	(0.6442)
	0.0310	0.0062	0.0118	0.0063

VI. Other Considerations

- a) Caliper: In 1:1 matching (also weighted Radius matching), it determines the distance in propensity score that defines a matched observation—the smaller the distance, the more restrictive the matching. The appropriate caliper size depends on the distribution of propensity scores; a value of 0.1 may be restrictive in some cases and too lenient in others.
- **b) Common support**: Discard treated observations whose propensity score is higher than the maximum or less than the minimum propensity score of untreated firms.
- c) Average Treatment Effect: Quantifies the mean difference in outcomes between individuals who receive a treatment and those who do not, reflecting the treatment's overall impact across a population.

VI. Other Considerations

- d) Use of lags: When panel data is available, it is recommended to do the matching in one year and the outcome in the following year.
- e) Induced vs Counterfactual: It helps differentiating the change in outcome that has been produced by the treatment, and the part that would have been achieved anyway.
 - i. This method normally requires more than two year lags one for the treatment, and another for assessing the induced effect (e.g., digital -> export > productivity).
 - ii. Notice that Panel Data is not very friendly with matching, so one strategy is to do repeated 3-year matching cross sections (with 2-year lags) if the panel is of 4 years or more.
- f) Continuous treatment: In some instances, it is relevant to consider a continuous treatment, in this case a dose response approach is appropriate, which is based on the generalized propensity scores. The treatment effect focuses on the change in the treatment variable (invest £1,000 more).

References

(not including the under review papers)

Aquilante, T., & Vendrell-Herrero, F. (2021). Bundling and exporting: evidence from German SMEs. *Journal of Business Research*, 132, 32-44.

Aranguren, M. J., De La Maza, X., Parrilli, M. D., Vendrell-Herrero, F., & Wilson, J. R. (2014). Nested methodological approaches for cluster policy evaluation: An application to the Basque Country. Regional Studies, 48(9), 1547-1562.

Bustinza, O. F., Vendrell-Herrero, F., & Gomes, E. (2020). Unpacking the effect of strategic ambidexterity on performance: A cross-country comparison of MMNEs developing product-service innovation. *International Business Review*, *29*(6), 101569.

Ortín-Ángel, P., & Vendrell-Herrero, F. (2014). University spin-offs vs. other NTBFs: Total factor productivity differences at outset and evolution. *Technovation*, *34*(2), 101-112.

Vendrell-Herrero, F., Darko, C. K., Gomes, E., & Lehman, D. W. (2022). Home-market economic development as a moderator of the self-selection and learning-by-exporting effects. *Journal of International Business Studies*, *53*(7), 1519-1535.

Vendrell-Herrero, F., Gomes, E., Darko, C. K., & Lehman, D. W. (2025). When do firms learn? Learning before versus after exporting. *Small Business Economics*, *64*(1), 203-219.

Zhou, Y., Gomes, E., & Vendrell-Herrero, F. (2023). Learning 'from'vs. learning 'about'partners in pre-acquisition strategic alliances: The role of familiarity. *Long Range Planning*, *56*(6), 102386.

Thank you!

Questions?

